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Accurate numerical solutions to the problem of finding the location of the interface 
between two unconfined regions of fluid of different density during the withdrawal 
process are presented. Supercritical flows are considered, in which the interface is 
drawn directly into the sink. As the flow rate is reduced, the interface enters the sink 
more steeply, until the solution method breaks down just before the interface enters the 
sink vertically from above, and becomes flow from the lower layer only. This lower 
bound on supercritical flow is compared with the upper bound on single-layer (free 
surface) flow with good agreement. 

1. Introduction 
The withdrawal of water from a fluid consisting of several layers of different density 

has a range of engineering applications. In particular, understanding the process of 
withdrawal from reservoirs is important for achieving various water quality constraints, 
and in modelling the physical processes within the water body. Withdrawal and inflow 
to solar ponds are used to extract energy and to control the stratification in the pond 
in order to maintain stability and optimize efficiency. In power station cooling ponds, 
efficient operation can be maintained by paying careful attention to withdrawal 
(Imberger & Hamblin 1982). 

Experiments (Gariel 1949; Harleman & Elder 1965; Jirka 1979; Hocking 1991b) 
show that the qualitative behaviour of the flow when withdrawal occurs through a 
narrow horizontal slot in the vertical endwall of a rectangular tank containing two 
homogeneous layers of different density is as follows. If the slot is situated within the 
lower layer, buoyancy forces ensure that only fluid from the lower layer is drawn 
through the slot at low values of the flow rate. At this time, there is a very slow 
(compared to the flow in the lower layer) circulation of the fluid in the upper layer. The 
interface between the two layers remains approximately horizontal once the transient 
wave motion caused by opening the slot has dissipated, except for a slight thickening 
of the interface near the wall directly above the slot. As the depth of the lower layer 
decreases the effective flow rate increases, and at some critical value the interface is 
suddenly pulled down and enters the slot directly, so that the upper layer also begins 
to flow out through the slot. This critical transition occurs in a matter of seconds. Once 
above this critical flow rate, the angle at which the interface enters the slot decreases 
as the effective flow rate increases. 

Experimental work has shown that there is a large scatter in the values of the critical 
flow rate, and a theoretical investigation of the flow is important in interpreting results 
obtained in experiments and in the field. Solution of the Navier-Stokes equations in 
such problems using finite-difference or finite-element techniques is fraught with 
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difficulties because of the moving interface, and the very rapid transitions in density 
and velocity within. 

Craya (1949) approximated the subcritical flow (i.e. when only the lower layer is 
being withdrawn) as a steady irrotational motion of an inviscid incompressible fluid, 
and the withdrawal slot by a line sink. This assumption necessitates the solution of 
Laplace's equation in the fluid domain subject to conditions which ensure continuity 
of pressure across the interface and prohibit flow through the boundaries or across the 
interface. The problem is further complicated by the fact that the location of the 
interface is unknown. This model of the flow clearly neglects some features which may 
be of importance in determining the exact details of the flow in a real situation, such 
as viscous effects near the walls and along the interface, the time-dependent nature of 
the flow as the level falls, and the transient effects of opening the slot. 

As a starting point for a study of these flows, the work of Craya (1949) and others 
(see later) over 40 years show that this model does give the correct qualitative 
behaviour of the flow. There is certainly room for improvement of the model by 
incorporating some of the effects mentioned above, perhaps using boundary-layer 
theory and allowing time-dependence, but the increase in difficulty of solving the 
resulting mathematical equations is significant. 

In this paper, this ideal fluid model is extended to consider the flow when both layers 
are being drawn through the slot. The interface is assumed to be very thin, and once 
again steady irrotational flow of an incompressible inviscid fluid is considered. 

The critical value of flow rate can be shown to be characterized by the Froude 
number in the lower layer, 

I; = (Q;/g'H3)l / ' ,  

where Q, is the flux of fluid into the slot per unit width from the lower layer, g' = 
(Ap/p)g is the effective gravity, where g is gravity, Ap is the density difference between 
the two layers, p is a reference density, and H is the depth of the sink beneath the 
equilibrium level of the interface. 

Previous work on this problem can be divided into theoretical work in the subcritical 
regime, in which the flow is restricted to the lower (high-density) region of the fluid, and 
some experimental work. 

It is interesting that if one assumes that the flow in the upper layer is stagnant, the 
equations describing the flow of a single layer of fluid beneath a free surface are 
identical to those describing the flow in the lower layer of a two-layer fluid beneath an 
interface, except that the gravity g is replaced by the effective gravity g' (see e.g. Jirka 
1979; Yih 1980). 

An exact solution in the subcritical regime was found by Sautreaux (1901), and 
subsequently by Craya (1949). This solution consists of a downward cusp in the 
interface directly above the sink, and occurs when there is a wall sloping downward 
from the sink with an angle of 30" to the horizontal. Tuck & Vanden-Broeck (1984) 
used a numerical series truncation method to compute a similar cusped flow for the 
case of a line sink in a single-fluid region confined only by a free surface. Further 
numerical solutions of this type were later obtained by Hocking (1985) and Vanden- 
Broeck & Keller (1987) for slightly different geometries, including some in which the 
lower layer was of finite depth. One interesting aspect of the solutions to the problem 
in which the fluid domain is of infinite depth is that the cusped solutions occur at a 
unique value of the Froude number, while in the finite-depth problem such cusped 
solutions occur over a continuous range of Froude numbers (Vanden-Broeck & Keller 
1987 ; Hocking 199 1 a). 

These cusped solutions are thought to occur at the critical point in the flow, that is 
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FIGURE 1. Figure defining the problem under consideration. 

flows with a Froude number beneath this value are restricted to the lower layer, while 
those with higher values of the Froude number involve water from both layers entering 
the sink. In the cases where there is a continuous range of Froude numbers for which 
cusped solutions exist, it is most likely that the minimum value of F corresponds to the 
critical flow (Yih 1980). However, these cusped solutions are difficult to observe 
because if they exist at all the unsteady flow will pass through this state very quickly. 
It is even possible that viscous effects at the interface may prevent their formation. At 
the level of the approximations used in this work, however, it is likely that whether they 
exist or not, they do represent the transition point between the one- and two-layer flow 
regimes. 

For withdrawal through a slot, i.e. the two-dimensional problem, the experimental 
work is restricted to that of Gariel (1949), Harleman & Elder (1965), Wood & Lai 
(1972) and Hocking (1991 b). In almost all of these cases it was found that the critical 
drawdown point, at which the upper fluid begins to flow out through the sink, occurs 
at a Froude number much lower than that predicted by the cusped solutions outlined 
above. This result is consistent with the experimental results for a point sink, in which 
the drawdown occurs at much lower values of the Froude number than expected 
(Harleman & Elder 1965; Jirka & Katavola 1979; Lawrence & Imberger 1979). 

In this paper, an integral equation approach is used to compute accurate numerical 
solutions to the supercritical flow problem in which water from both layers is flowing 
out through the sink. 

In $2 the flow into a horizontal slot is considered together with how the sink 
representation approximates such a flow. This is followed by non-dimensionalization 
of the equations, the derivation of the integral equations which must be satisfied in the 
two layers, and the conditions on the interface. 

Section 3 describes the numerical scheme which is used to solve this system of 
equations, and $4 discusses the results in the context of other work on this problem. 
It is found that for any fixed value of the Froude number, there is a single value for 
the angle at which the interface enters the sink, ranging from an angle approaching 
zero, i.e. horizontal, as F + w ,  up to an angle approaching 90°, i.e. vertical, as the value 
of F drops down to a critical value, Fc. The value of F, which is obtained is very close 
to the unique value obtained by Tuck & Vanden-Broeck (1984) for the cusped solution 
in a single-layer flow. In addition, the shape of the interface approaches that of the 
cusped flow (see figure 4). Thus the results provide evidence in support of the 
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hypothesis that in this model the cusped solutions represent the critical transition flows, 
at least for a fluid of infinite depth. 

2. Problem formulation 
The steady irrotational motion of an inviscid incompressible fluid in two dimensions 

is to be examined. The fluid is separated by an interface of infinitesimal thickness into 
two homogeneous regions of different density. The solutions we seek are those in which 
the interface is drawn down a distance H to a point where it enters the sink with an 
angle a to the horizontal. Fluid is being withdrawn from both above and below the 
interface (see figure 1). 

Let z = x + iy be the physical plane, with the origin directly above the line sink, and 
at the level of the interface far away from the sink. If y = ~ ( x )  is the equation of the 
interface, suppose the region below the interface to have density p1 and the region 
above the interface to have density p,. The velocity potentials of the separate flow fields 
below and above the interface must both satisfy Laplace’s equation, i.e. 

As the sink is approached, the velocity potentials must have the correct behaviour, 
which is 

where Q, and Q, are the respective fluxes per unit width from within the two regions. 
There is a relationship between these two values which must hold if the dynamic 
condition on the interface is to be satisfied. Applying the Bernoulli equation to the 
streamline along the interface, and noting that for steady flow there must be no 
pressure difference across the interface leads to the result that 

This equation can be rearranged to give 
P1 gv(x) + t P l ( @ L  + @&) = Pz g y ( 4  + ;PZ(@L + @iY) on Y = T ( X ) .  (2.3) 

(2.4) w?w + ((@L + @&I - Y(@L + q,>> = 0, 
where g’ = [(Pl-Pz)/Pllg, and Y = P,/Pl* 

We note in passing that if the velocity in the upper layer is zero (stagnant fluid), (2.4) 
becomes 2g’q(x) + (G:z + Giy) = 0, which is identical to the equation for constant 
pressure on a free surface, except that g is replaced by g’. Therefore the work done in 
solving free-surface flow problems relates directly to the current two-layer flow 
situation, and is an analogue of the subcritical flow behaviour, in which the upper fluid 
is assumed to be stagnant. 

Considering the behaviour of the flow near the sink (2.2), we see that in order to 
satisfy (2.4), it is necessary that 

This result seems slightly surprising at first. However, if we consider the flow as an 
approximation to a flow into a thin horizontal slot which extends to x = - co, we see 
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that a long distance into the slot, if 8, and 8, are the depths of the two layers flowing 
horizontally with velocities u1 and u, respectively, the ratio of fluid originating from the 
two outer regions is, from (2.4), 

so that once again there is a condition on the flow which relates the density in the two 
layers with the flow at the interface and in the slot. 

Further, if we assume that the size of the slot is small compared to its depth beneath 
the undisturbed height of the interface, i.e. Si < H ,  i = 1, 2, then 

Comparing this to the proposed model of flow into a line sink where the interface 
enters with angle a, we see that 

R-2a - Q2 = p / 2  
Qi 7r + 2a’ 

and thus there is a direct analogy between the angle of entry into the sink and the depth 
downstream in a finite-sized slot. Huber (1960) was able to show that if the two outer 
layers are of finite depth, there is a direct relationship between the Froude number and 
the angle of entry. However, in the unconfined flow considered here there is no way to 
determine the relationship between Froude number and angle of entry into the sink (or 
of depths downstream in the slot) without solving the full system of equations. 

The final condition to be satisfied is that there be no flow across the interface, and 
we ensure that this is so by defining stream functions Yl and Y2, and enforcing the 
condition that Y, = Yz = 0 along the interface, y = q(x). 

If we let y’ = y / H ,  x’ = x / H ,  @; = [2Q,/(n + 2a)l G1 and @; = [2Q, y i / 2 / ( ~  + 241 @,, 
then the non-dimensional form of the dynamic condition is 

g7r + 2a)’F-’ q’ + ((@iZ)’ + (@iJz)  - ((@iZ)’ + (@&)’) = 0, (2.6) 

where F = (Q;/g’H3)”’, (2.7) 

} (2.8) 
and @; + -log [(x’)2 + (y’ + 1)2]1/2 as (x ’~  y’) + (0, - I), y’ c q’(x) 
and @;+-log [(x’)~ + (y’ + 1)2]1/2 as (x’, y’) + (0, - I), y’ > q‘(x). 

We will henceforth dispense with the prime notation for dimensionless variables. One 
method of solution to this problem is to write a complex potential for each region 
which builds in the correct behaviour both as the sink is approached and in the far field, 
and then compute the corrections to these. Choices which satisfy these requirements 
are 

1 fl = @,+iY1 = -log(z+i)--log 2-1- +wl ,  y < ~ ( x )  2a R ( .;a) 

and (2.9) 

f, = @,+iY1 = +w2, y > q(x), 

where a is the angle of the interface at the point of entry into the sink and w, = q5, + iq9j, 
j = 1,2, are the correction terms for the full velocity potentials. In each case these 
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FIGURE 2. Contours used in the derivation of the integral equations (2.16). 

choices represent the addition of another singular point outside the domain of interest. 
These are a line sink at y = 7t/(2a) for the lower fluid, and a line source at y = -77/(2a) 
for the upper fluid. It is not difficult to show that these choices satisfy the requirement 
that the line Yj = 0, j = 1,2, enters the sink at an angle a to the horizontal, and that 
~ ( x )  + 0 as x +a, provided 

(2.10) 

7 ( 4  -@a $,(x, 7) = -arctan ?@r1) - -- 2aarctan( 
7t ) 

X 72: ) . 
and 

$2(x, 7) = - arctan (-) q(x)+l + - 201 arctan ( r(x) +@a 

This choice off, andf, also ensures that w,+ 0, j = 1,2, as lzl +co and as z+-i. The 
functions 

(2.1 1) 

must be analytic in their respective domains. Following Forbes (1985), we apply 
Cauchy’s Theorem to wr, j = 1,2, on the regions above and below the interface, to get 

I wl(x9Y) = q4(x,Y>+i$l(x,Y), Y < 7 ( 4 ,  
W2(%Y) = +2(x,v) +i$Gr,(xA Y ’ ?I(x) 

(2.12) 

where r, and r2 are the contours shown in figure 2, and z,, lies on the boundary in each 
case. Now since wl(z) and w,(z) +O as IzI +m, the contribution of that part of rwhich 
consists of the circular arc can be shown to be zero. Thus we only need to integrate 
along the interface. If we let s be the arclength along the interface starting from the 
sink, so that 

(2.13) 
we obtain 

dt. (2.14) rn wl(z(t)) dz/dt rn w2(z(t)) dz/dt 
z(t) - 4s) 

dt, -7tiw2(z(s)) = 
- 4s) 

niw,(z(s)> = 

Since ~2 are known along the interface from (2.10), these represent integral 
equations for $, and $2 respectively. Taking the real parts, and utilizing the symmetry 
of the situation about the line x = 0, i.e. 

x( - s) = - x(s), y( - s) = y(s), x’( - s) = x’(s), y’( -s) = - y’(s), 
$,(-s) = $,W, $,(-.I = - $ j W ,  j = 192 
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the integral equations become 

])df, j =  1,2, (2.16) x’(t)Ax-y’(t)Ay x’(t)&+-y’(t)Ay 
+ ”(‘)( [ Ax2 + Ay2 ] - [ Ax: + Ay2 

where Ax = x(t)--@),Ax+ = x(t)+x(s)  and Ay = y( t ) -y(s) ,  and K~ = + 1, K~ = - 1. 
Using the arclength formulation, the interface condition (2.6) simplifies a little to 
become 87t + 2a)’ F-’ T,I(S) + - = 0. (2.17) 
Thus the problem which must be solved is the combination of the two integral 
equations given by (2.16) and the interface condition (2.17) along the unknown 
interface, y = T,I(x). 

3. Solution method 
As the location of the interface is unknown, and because of the quadratic 

dependence of the interface condition upon the velocity, this is a highly nonlinear 
problem. In order to solve this problem we must resort to a numerical scheme. There 
is an additional complication caused by the presence of the singular point representing 
the sink flow on the interface itself, which makes the problem numerically unstable 
near to the sink if it is not treated very carefully. An algorithm which was found to be 
successful, however, is described below. 

(i) Make a guess for ~’(s), the rate of change of with respect to the arclength, at 
a set of evenly spaced points along the interface, sk, k = 1,2, . . ., N, and also make a 
guess for the entry angle of the interface into the sink a, given a fixed value of F. 

(ii) This guess for ~’ (s)  can be integrated to give ~(s) ,  and noting that 
x’(s) = [ 1 - T/J’(s)2]1’2, 

x(s) can also be obtained by integration. A trapezoidal rule integration scheme was 
found to be adequate for these calculations. 

(iii) Using x ,  7, x’(s), ~’ (s)  along the interface, the integral equations (2.16) for #1 
and #2 can be solved by making a guess for $1 and $2 at the same set of points, i.e. sk, 
k = 1,2,. . ., N, and using a Newton iteration scheme. The accuracy of the numerical 
integration is crucial to the solution of the full problem. The singular part of the 
principal value integral was removed by noting that 

where zN corresponds to the point at which the integral is truncated. It was found that 
provided the truncation point was chosen to be greater than sN w 7 the differences in 
the results were minimal. Also, it is essential to include an approximation to the 
portion of the integral which is neglected. This correction term was found to be very 
important in the success of the method. Both q5 and + can be shown to behave like 
O(s-’) as s-+co, SO if we let 4 = + N s N / s ,  and $ = $ N  sN/s  for s > sN, and note that for 
large values of s, x x xN + ( s - s N )  and y w 0, then a simple correction term can be 
added to each integral term in the integral equations. A Gill-Miller finite-difference 
scheme from the NAG mathematical function library was used to perform the 
integrations. 

(iv) Once and $2 have been obtained, a forward difference scheme can be used to 
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F a 

7.823 0.385 
6.117 0.468 
4.379 0.619 
2.575 1.004 
2.336 1.079 
2.013 1.305 
1.958 1.352 
1.905 1.400 

TABLE 1. Computed Froude number for different angles of entry of the interface into the sink 

calculate and $2s, and the error in the interface condition (2.17) can be evaluated. 
If the error is small at all points on the interface, say less than lo-’, then the algorithm 
is stopped. If the error is greater than this value at any point, then a Newton’s method 
is used to update the original guess for ~’(s), and we return to step (ii). 

Although the convergence of the scheme was rapid, taking about six iterations at 
each new value of the Froude number, the need for the integral equations to be solved 
numerically N2 times within each iteration meant that a long time was taken for each 
simulation. Values of N up to 100 were used, but the time taken to use larger values 
of N was found to be prohibitive. 

It is to be expected that for a given value of Froude number, F, there would be a 
single value of entry angle a for which a solution would exist, since if the withdrawal 
rate is higher, the interface would be pulled down more. This was found to be the case. 
Attempts to compute solutions in which both F and a were specified were a failure, as 
were attempts to compute solutions in which both were free parameters. 

A solution was first obtained at a large value of F for which the interface was almost 
horizontal, and then successive solutions were obtained by decreasing the value of F 
and using the previous solution as a starting guess for the iteration scheme. As F 
decreased, a was found to increase, as shown in table 1, which shows only some of the 
results obtained, and figure 3. 

It was not possible to obtain solutions for values of a greater than 1.4, since for larger 
values of a, the method failed to converge. Remembering that a = 0 . 5 ~  x 1.57 
coincides with the case in which the flow is restricted to the lower layer, it seems likely 
that the failure was due to the high curvature of the interface as the critical flow is 
approached. As N was increased it was found that higher values of a could be obtained 
before the method failed, but the time taken became prohibitive for the reason 
mentioned above. However, solutions with N = 80 were found to be accurate to three 
decimal places except near the point at which the numerical scheme failed, and this 
value of N was used for most calculations. 

4. Results and comment 
The major result of this paper is shown in figure 3. The solid line represents a least- 

squares fit of the relationship of F to a obtained using the numerical solutions, shown 
as crosses. As can be seen, this curve, given by 

F = 0.5105(~ + 2a) (4.1) 
fits the data very well. The (n + 2a) term in this equation is due to the change in flux 
as the angle of entry into the sink changes. In order to compare these results with the 
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FIGURE 3. Plot of the Froude number F against the angle of entry of the interface into the sink, u. 
The solid line is a best-fit curve and the crosses are solutions obtained using the numerical scheme. 
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FIGURE 4. Interface shapes for different values of a compared with the cusp solution of 

Tuck & Vanden-Broeck (1984). 

cusp solution of Tuck & Vanden-Broeck (1984), a similar curve was computed for all 
values of Froude number F < 2.2 and the limit was taken as a+$. In this manner, a 
critical value of F, z 1.73 was obtained. This compares extremely well with the value 
F, = 1.77 calculated by Tuck & Vanden-Broeck (1 984) for the unique cusped solution. 
This is very strong evidence that this cusped solution is indeed the critical value at 
which the transition between single-layer and two-layer flow occurs. 

Further evidence is provided in figure 4, which shows the cusped solution of Tuck 



46 G. C. Hocking 

& Vanden-Broeck (1984) compared with the interface shapes computed for increasing 
values of a in the work described in this paper. 

This paper describes a method which was used to compute accurate numerical 
solutions to the problem of supercritical withdrawal through a line sink from a two- 
layer fluid. The results support the belief that the cusped solutions of Craya (1949), 
Tuck & Vanden-Broeck (1984), and Hocking (1985), are the transition between single- 
and two-layer flows. It therefore seems likely that the differences between the 
numerical solutions and the experimentally determined critical flow values are due to 
the effect of the non-zero thickness of the interface, viscous effects, and transient effects 
of turning on the sink. 

In a vertically confined fluid however, it has been shown on numerous occasions 
(Vanden-Broeck & Keller 1987; Hocking 1988, 1991 a) that there are cusped solutions 
over a continuous range of Froude numbers for a given geometry. For some cases there 
is also a unique subcritical solution with a cusp, and it is possible that this solution 
represents the transition from the one-layer to the two-layer flows. However, not all 
ratios of sink to base depth have these unique solutions. This raises the question as to 
which of this range of solutions is the true critical value. Work is under way to resolve 
this issue. 
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